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Abstract—This paper is concerned with evaluating stress intensity factors for a curved cracked
beam of small to moderate curvature using a simple engineering method which allows us to estimate
the strain energy release rate based on elementary beam theory. The basic methodology is briefly
discussed and an example application to a cracked circular beam gives results which are in reasonable
agreement with more accurate numerical calculations in the literature.

1. INTRODUCTION

Curved beams have many applications in structures like roofs, pipes, bridges and reactor
vessels. Figure 1 illustrates a cracked circular beam which is often used in fracture testing
of shell-like structural elements. In order to obtain reliable K- data it is necessary to
calculate the stress intensity factor (SIF) values within a broad range of crack length and
specimen dimension. So far only a numerical method, the so-called mapping-collocation
technique [e.g. Andrasic and Parker (1980), Tracy (1975) and Kapp et al. (1980)], has been
used to determine solutions for commonly-used geometries and loading conditions, e.g.
moments and/or tensile forces applied to the ends of a circular cracked beam. The SIF
database obtained in this manner has been limited to a certain range of geometrical and
loading parameters and it is by no means straightforward how to extend these bounds
without performing additional numerical calculations.

Simple engineering methods which allow a fast but approximate determination of
critical design variables such as the stress intensity factor are invaluable to a design engineer
who “must strike a balance between time, cost and accuracy in selecting a method”
(Andrasic and Parker, 1980, p. 67). With these thoughts, Herrmann and coworkers (Herr-
mann and Sosa, 1986; Kienzler and Herrmann, 1986a,b) developed an engineering
approach of using elementary beam theory to estimate the strain energy release rate due to
enlargement of a crack and to calculate the stress intensity factor. Gao and Herrmann

Fig. 1. Circular cracked beam subjected to a moment couple or tensile forces.
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(1992) showed that the SIF predicted from this method can be further made to match
asymptotically with standard crack solutions in limiting cases, and, in that procedure, a
correction factor, f, can be determined which leads to more accurate SIFs over the full
range of crack length.

This paper has the intention of exploring the applicability of the beam-theory method
in problems involving curved cracked beams. For conciseness we shall focus our discussion
on a single-edge-notched circular beam of rectangular cross-section subjected to a bending
moment or a tensile force. It is found that the simple beam-theory method is indeed capable
of providing results which compare favorably with numerical data available in the literature.
It is relatively easy to extend the basic methodology discussed here to more complicated
cracked beam problems.

2. THE METHOD

The energy release rates dU/d! and 0U/oh of cracks which are either extended by d/ or
widened by dh are related as follows (Gao and Herrmann, 1992) :

oU oU
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The strain energy of the body is denoted by U and f is a correction factor depending upon
the crack size and the geometry of the specimen.

In this paper we deal exclusively with the state of plane stress, in which case the energy
release rate is related to the mode I stress intensity factor, K|, as follows:
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Here, E is Young’s modulus and ¢ stands for the thickness of the beam.

Obviously, two unknowns must be determined in order to arrive at an explicit expression
for the SIF of a cracked beam: 0U/0k and f. In order to determine the first unknown, U,
consider the beams with discontinuities in stiffness as indicated in Fig. 1. Following Herr-
mann and coworkers (Herrmann and Sosa, 1986 ; Kienzler and Herrmann, 1986a, b), U/oh
can be obtained by calculating the difference between the strain energy stored in the actual
cracked cross-section and that in the uncracked counterpart. When this is done we can
show that

%Lh] = — i [Jvu,(r, P)r dr*£ u(r, d)r dr], (3)

where u,(r, @), u(r, ¢) denote the strain energy density at the cracked and uncracked cross-
section, respectively (Fig. 1).

The factor f in eqn (2) can be determined provided asymptotic expansions for the
SIFs of short and long cracks are known (Gao and Herrmann, 1992). The expansions
depend upon the loading conditions and upon the geometry of the beam in question. The
asymptotic solutions for straight beams were presented by Benthem and Koiter (1973), but,
unfortunately, no solutions are seemingly available for curved beams. However, it is found
that the curvature of the beam (which should remain sufficiently small within the framework
of elementary beam theory) plays a negligible role in the correction factor and is sufficiently
represented by the energy release rate expression in eqn (3). Thus in our calculations we
shall use the known expressions for f of straight beams.
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3. SIFs OF CIRCULAR BEAMS OF RECTANGULAR CROSS-SECTION

3.1. Pure bending
Consider the cracked, circular beam shown in Fig. 1 subjected to a bending moment,
M, at its ends. The solution for the stresses in such a beam, given in Timoshenko and

Goodier (1970), can be used to perform the integrations in (3) leading to:
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Figure 2 presents numerical values for the stress intensity factor, Kj, as predicted by eqn
(4) and normalized by K, [cf. Andrasic and Parker (1980) or Tracy (1975)]:
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The correction factor Sy has been chosen to be the same as that for the straight beam under

pure bending (Gao and Herrmann, 1992), ie.
1 _ 6.65
B = 1.3183{1—1—2(—1_—:) } 6)

As shown in Fig. 2, the results from (4)—(6) agree well with numerical data obtained by
mapping collocation (Andrasic and Parker, 1980; Tracy, 1975). Usually the difference is

much less than 5%, only in the case of y = 1/1.25 can it go as high as 16%.
Next, consider the curved three-point bending specimen shown in Fig. 3, in which case

the net moment at the cracked cross-section is given by :
)

P
M=§asm¢.

Figure 4 shows the SIFs resulting from eqns (4), (6) and (7) for the case ¢ = n/4. The

results have been normalized by :

I
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Elementary Beam Theory
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Fig. 2. Correction functions for a curved cracked beam (pure bending).
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Fig. 3. Curved three-point bending specimen.
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As in the case of pure bending the correction function, fy, for the straight beam leads to
SIFs which agree satisfactorily with the data presented in the literature (Tracy, 1975).
Similar to the curve for y = 1/1.25 in Fig. 2 the difference reaches a maximum of 11%.
In the limiting case of a straight beam one may verify that eqn (4) reduces to the
corresponding equation given by Herrmann and Sosa (1986).

3.2. Tensile loading

Consider the cracked, circular beam of Fig. | which is now subjected to a pair of tensile
forces of strength, P, applied at the center of its end cross-section.

The stress intensity factor, K, consists of two parts, one due to the resulting moment
and one due to the influence of the tensile forces. We shall denote these parts by Ky and
K5, respectively :

K[ = KM +K;>. (9)

To compute both parts two simplifications will be made. First, we shall assume that the
neutral axis is located in the middle of the ligament, independently of the crack depth. As
was pointed out by Benthem and Koiter (1973) this is not true for cracks which run almost
through the beam. However, in comparison with numerical results we shall see that this
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Fig. 4. Correction functions for a curved cracked beam (three-point bending).
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effect is negligible. Thus we shall use eqns (4) and (6) together with the following expression
for the moment :

=%ﬁ{1+x—(1+y)cos é). (10)

Second, we note that for curved beams the moment contributes mostly to the stress intensity
factor and that it suffices to use the corresponding equations of Kj for straight beams which,
according to Kienzler and Herrmann (1986a, b), Herrmann and Gao (1992), and Miiller
et al. (1993), read:
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Figure 5 presents a numerical evaluation of eqn (9) for ¢ = n/4 and #/2 when normalized
by K,:
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Fig. 5. Correction functions of a C-ring specimen.
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———[L.9+ L.Ix—1.5(1 + ) cos ¢]. (12)
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It can be compared to the following formula, based on curve fitting of mapping-collocation

data (Kapp et al., 1980):
y -V
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where

Use of formula (13) is accurate within 3% when limited to the following range of par-
ameters :

0.2<%<1.0, osfigs(:' neosé o, (15)
[ ) _'V

=

However, in order to obtain Fig. 5, eqns (13), (14) were evaluated regardless of this limit.
Note that even then the resulting data agree fairly well with those predicted by elementary
beam theory.

4. OUTLOOK AND CONCLUSIONS

Elementary beam theory was applied to derive analytical expressions for the SIFs of
cracked circular beams which are used as structural elements and for fracture toughness
testing of shell structures. The results obtained show an agreement with existing solutions.
Wherever the range of application of a particular former result in the literature was limited
to a certain range of crack length or load positioning, an extended solution has been
provided. Finally, it should be mentioned that the presented method can be used to
investigate a great variety of fracture mechanics problems, such as the determination of
SIFs in specimens of orthotropic and composite materials or cracked pipes and shells.
Papers concerned with these topics are in preparation.
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